
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 279 (2005) 843–855

Application of the pothole DAF method to vehicles traversing
periodic roadway irregularities

A.V. Pestereva, L.A. Bergmanb, C.A. Tanc, B. Yangd,*
a Institute for Systems Analysis, Russian Academy of Sciences, pr. 60-letiya, Oktyabrya 9, Moscow 117312, Russia

bAeronautical and Astronautical Engineering Department, University of Illinois at Urbana-Champaign,

104 S. Wright St., Urbana, IL 61801, USA
cDepartment of Mechanical Engineering, Wayne State University, 5050 Anthony, Wayne Drive, Detroit, MI 48202, USA
dAerospace and Mechanical Engineering Department, University of Southern California, 3650 McClintock Avenue,

Los Angeles, CA 90089-1453, USA

Received 28 February 2003; accepted 17 November 2003

Abstract

This paper is a sequel to the work discussed in Pesterev et al. (Journal of Sound and Vibration, in press).
In that paper, it was suggested that the technique to determine the effect of a local road surface irregularity
on the dynamics of a vehicle modelled as a linear multi-degree-of-freedom system relies on the so-called
pothole dynamic amplification factor (DAF), which is a complex-valued function specific to the irregularity
shape. This paper discusses the companion problem of how to determine the DAF function for an
irregularity represented as a superposition of simpler ones. Another purpose of this paper is to demonstrate
the application of the pothole DAF functions technique to finding a priori estimates of the effect of
irregularities with a repeated structure. Specifically, we solve the problem of finding the conditions under
which the dynamic effect of two identical potholes located one after another is greater than that due to the
single pothole. We also find the estimate for the number of periods of a periodic irregularity that are
sufficient in order to consider the oscillator response as steady state. The discussions are illustrated by
numerical examples.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

In the companion paper [1], a technique has been developed to determine the effect of a local
road surface irregularity on the dynamics of a moving vehicle modelled as a general linear
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multi-degree-of-freedom (m.d.o.f.) system. The problem has been shown to reduce to solving an
uncoupled system of first order complex differential equations in modal co-ordinates. For an
irregularity described functionally, solutions of all equations are found analytically and expressed
in terms of a function of one complex variable, the so-called pothole dynamic amplification factor

(DAF), defined in Ref. [1, Eq. (13)]. Thus, to find the contact forces (to be more specific, Fourier
coefficients of these forces) arising after passing an irregularity, one needs the DAF of this
irregularity. Pothole DAF function FðgÞ is specific to the pothole shape; mathematically, it is, up
to a scalar factor, the complex amplitude of a modal oscillator immediately after passing the
pothole. All parameters—oscillator eigenfrequency, vehicle speed, and pothole width—affecting
the response are combined in one complex variable g:
The DAF functions for several typical potholes have been derived in the appendix to Ref. [1].

Clearly, those potholes do not exhaust all possible irregularity configurations that are likely to be
met in practice. On the other hand, with any desired degree of accuracy, an arbitrary irregularity
can be represented as a superposition of simpler potholes/bumps, for which the DAF functions
are available or can easily be found. Thus, the first objective of this paper is to develop the
technique for constructing the DAF function of a complex irregularity composed of simpler
(‘‘elementary’’) ones by the DAF functions of the latter. In this paper, we consider a particular
case of complex local roadway irregularities; namely, those represented by periodic functions on
finite intervals. Such an irregularity can be represented as a superposition of elementary potholes
defined on the interval of length equal to the period of the function. The DAF functions for such
irregularities can be obtained in exactly the same way as in Ref. [1]. We, however, will consider
another approach, which can be applied not only to periodic irregularities but also to arbitrary
non-periodic ones, and establish the equation for the DAF function of a periodic irregularity in
terms of the DAF of the corresponding ‘‘elementary’’ pothole. This problem is considered in
Section 2.
It is evident that the dynamic effect of several potholes located on the roadway, one after

another, can be either greater or less than that of a single pothole, depending on the pothole
width, speed, and vehicle parameters. Then, of interest are the conditions under which each
succeeding pothole amplifies the dynamic effect of the preceding ones. This is the second objective
of the paper, which is discussed in Section 3.
The third objective of the paper is as follows: Due to damping inherent in a vehicle, the

response of the vehicle traversing a finite periodic irregularity of sufficient length may be
considered as steady state. In many cases, this fact considerably simplifies the analysis. Indeed, let
the response of a given vehicle become almost steady state after passing N periods of a periodic
irregularity. Then, rather than considering longer finite irregularities, we examine the infinite
profile and consider steady state solutions, which are usually much simpler than transient ones. To
do this, we need to know how many periods of a given profile result in a steady state response for
a given vehicle. This problem is dealt with in Section 4.
The results obtained in Sections 2–4 are applied to profiles described by the sine function, which

is discussed in Section 5. It should be noted that, although solutions of all uncoupled equations in
the modal state space for a given irregularity are expressed in terms of one DAF function FðgÞ; the
complex variable g takes different values for different modal oscillators. Hence, estimates
obtained in Sections 3–5 are valid for the modal oscillators (i.e., separate vehicle eigenvibrations)
rather than for the vehicle as a whole. For example, two potholes located one after another can
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increase the response of one modal oscillator compared to the case of one pothole and reduce the
response of another. In view of this remark, we confine our illustrations in Section 6 to those
related to a single-degree-of-freedom (s.d.o.f.) oscillator.

2. Dynamic amplification factor functions for periodic irregularities

We will consider irregularities described by continuous periodic functions rðxÞ with period b
defined on an interval of length Nb; where N is the number of periods, and satisfying the
conditions rðx0Þ ¼ rðx0 þ NbÞ ¼ 0;1 where x0 is the left end of the irregularity. Such an irregularity
may be viewed as consisting of N elementary potholes, where, as in Ref. [1], the elementary
pothole is described by its width b; depth a; and a shape function *rðxÞ: Since, in the examples
below, we consider irregularities described by trigonometric functions, it is convenient to assume
that the domain of the shape functions is ½0; 2p�: For notational simplicity, we assume that x0 ¼ 0
and extend the definition of the shape function to the domain ½0; 2pN�; so that rðxÞ ¼ a*rðx=bÞ for
xA½0;Nb�:
Let FðgÞ be the dynamic amplification factor for an elementary pothole (see Ref. [1, Eq. (A.2)]),

where g ¼ lb=ð2pvÞ; v is the vehicle speed, l ¼ aþ io is a complex parameter, and i is the
imaginary unit. Physically, l is a complex eigenfrequency of a modal oscillator, which implies that
ap0: Hence, we may consider only g with non-positive real parts, Re gp0: Denote by FNðgÞ the
dynamic amplification factor for the periodic irregularity consisting of N elementary potholes.
The function FNðgÞ is defined similar to FðgÞ as

FNðgÞ ¼ ge2pNg
Z 2pN

0

e�gx *rðxÞ dx: ð1Þ

Representing the integral on the right-hand side of this equation as the sum of two integrals, we
obtain

FNðgÞ ¼ ge2pNg
Z 2p

0

e�gx *rðxÞ dxþ
Z 2pN

2p
e�gx *rðxÞ dx

� �
:

Changing the integration variable in the second integral, Z ¼ x� 2p; taking into account that the
function *rðxÞ is periodic with period equal to 2p; and simplifying, we get

FNðgÞ ¼ ge2pNg
Z 2p

0

e�gx *rðxÞ dxþ e�2pg
Z 2pðN�1Þ

0

e�gZ *rðZÞ dZ
� �

¼ e2pðN�1Þgge2pg
Z 2p

0

e�gx *rðxÞ dxþ ge2pðN�1Þg
Z 2pðN�1Þ

0

e�gZ *rðZÞ dZ:
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where rðx0 þ NbÞarðx0Þ implies that the flat segments of the road before and after the irregularity are at different
grades. In this case, the dynamic amplification factor function can be modified to take into account the difference

in levels. All resulting equations remain valid if we substitute the modified DAF function for the DAF introduced in

Ref. [1].
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Comparing this with the definitions of the functions FðgÞ [1, Eq. (A.2)] and FNðgÞ Eq. (1), we get
the following recurrence relation for FNðgÞ:

FNðgÞ ¼ e2pðN�1ÞgFðgÞ þ FN�1ðgÞ: ð2Þ

The first term on the right-hand side of Eq. (2) shows the increment in the dynamic amplification
factor due to extending the ðN � 1Þ-period irregularity by one period. For damped oscillators,
Re go0; and the first term vanishes as N goes to infinity.
It can be verified directly by substituting N � 1; N � 2;y for N into the recurrence relation (2)

that FNðgÞ can be written as

FNðgÞ ¼
1� e2pNg

1� e2pg
FðgÞ: ð3Þ

Denoting by FNðgÞ the dynamic amplification factor for an infinite periodic pothole composed of
the specified elementary pothole and letting N in Eq. (3) go to infinity, we obtain

FNðgÞ ¼
FðgÞ

1� e2pg
: ð4Þ

As can be seen, the dynamic amplification factor for an infinite periodic profile may cease to exist
only when e2pg ¼ 1; which holds when g ¼ ni; i.e., when g is a purely imaginary number. If we
confine our consideration to damped modal oscillators, the DAF function exists for any infinite
periodic profile.
The next two sections demonstrate the application of the DAF functions technique to finding

some a priori estimates, which are valid for potholes of arbitrary shape. First, we consider an
irregularity consisting of two elementary potholes located one after another and study when such
a configuration results in greater contact forces compared to the case of the single pothole.

3. Two successive potholes

As follows from Eq. (30) [1] governing the amplitude of the harmonic components of the
contact forces, for a fixed vehicle model, the greater the magnitude of the DAF function for a
given g; the greater the value of the force. Thus, in order to learn whether two successive
elementary potholes result in a greater force, we need to compare two DAF functions, FðgÞ and
F2ðgÞ: From Eq. (3), we have jF2ðgÞj ¼ jFðgÞjsðgÞ; where sðgÞ ¼ j1þ e2pgj: Thus, for a given g; the
contact force due to the two potholes is greater (less) than that due to one pothole when sðgÞ is
greater (less) than one.
Noting that

jgj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ o2

p
b

2pv
	

o0b

2pv
; ð5Þ

where o0 is the undamped oscillator eigenfrequency, we can write g as

g ¼ �jgjzþ ijgj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
; ð6Þ

where z ¼ �a=acr is the modal damping coefficient. In subsequent analyses, we will use two real
variables jgj and z; which have clear physical meaning, instead of one complex variable g:
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Substituting Eq. (6) into the equation for sðgÞ; we obtain

sðgÞ ¼ j1þ Reijj 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2 þ 2R cosj

p
; ð7Þ

where R ¼ e�2pjgjz and j ¼ 2pjgj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
: As can be seen from Eq. (7), sðgÞ is the distance from the

origin to a complex number lying on the circle of radius R centered at the point x ¼ 1 of the real
axis. For small jgj51; RðgÞE1 ðRð0Þ ¼ 1Þ; j is close to zero, and, thus, sðgÞE1þ RE2; i.e., the
second pothole doubles the dynamic effect of the first pothole. However, the range of small jgj is
not very interesting since, for any local pothole, Fð0Þ ¼ 0 (which follows from physical
considerations) such that both FðgÞ and F2ðgÞ are small in this range. As jgj grows, j increases and
R decreases, i.e., the point 1þ e2pg spirals counterclockwise to the center x ¼ 1 on the real axis. At
a certain jgj; sðgÞ becomes less than one (which occurs when j ¼ p=2þ arcsinðR=2)), takes its
minimum value, grows again, becomes greater than one (when j ¼ 3p=2� arcsinðR=2)), and so
on. Taking into account that 0oRp1; it is easy to show that sðgÞ is, for sure, greater than one

when jgj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
p1=4 or 3=4pjgj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
p5=4:When 1=3pjgj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
p2=3 or 4=3p jgj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
p5=3; sðgÞ is certainly less than one. Noting that o0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
¼ o (damped oscillator

eigenfrequency), denoting op ¼ 2pv=b; and plotting the ratio o=op on the real axis, we can

summarize the above results as follows:

if o=opA 0; 1
4

� �
; 3
4
; 11
4

	 �
; 1 3

4
; 2 1

4

	 �
y; then s > 1;

if o=opA 1
3
; 2
3

	 �
; 1 1

3
; 1 2

3

	 �
; 2 1

3
; 2 2

3

	 �
y; then so1:

It does not make sense to consider greater values of o=op since R exponentially vanishes, and we

can set s ¼ 1 without any loss of accuracy. If the value of o=op falls into a gap between any two

adjacent intervals, we can assume that the force after passing two potholes is approximately equal
to that after passing the single pothole (or, if needed, to find an exact value of s from Eq. (7)).
One can find better estimates, as well as determine approximate values of jgj for which s takes

its maximum and minimum values, by taking into account the known dependence of R on jgj and
z: Here, we note only that, for large damping, we may set s ¼ 1 for all jgj on the strength of the
fact that R is very small (although, for jgj51; RE1; the absolute error of this approximation is
negligible by virtue of the fact that jFðgÞj51). It also can be shown that, for small damping, sðgÞ
takes its minimum and maximum values, sminE1� e�pz and smaxE1þ e�2pz; when jgjE1=2�
z=ð2pÞ and jgjE1� z=ð2pÞ; respectively. The above analysis implies that an increase (reduction) in

the contact force due to the second pothole depends on the oscillator eigenfrequency, speed, and
pothole width, but does not depend on the pothole shape.
Also of interest is the overall magnification factor of the second pothole,

SðzÞ ¼
maxjgj jF2ðgÞj
maxjgj jFðgÞj

	
maxjgj jsðgÞFðgÞj
maxjgj jFðgÞj

;

which shows how much the maximum contact force due to two potholes is greater than that due
to one pothole. Generally, the maxima of sðgÞ and jFðgÞj may occur at different values of jgj;
therefore, the analysis should rely on the particular form of FðgÞ: In Section 5, we give a more
detailed analysis for the case of a ‘‘sine’’ pothole.
It is evident that, if the number of periods in a finite periodic irregularity is sufficiently large, the

response of a vehicle traversing such an irregularity approaches the steady state response owing to
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damping inherent in the vehicle. In this case, the exact number of periods in a particular
irregularity makes no difference, and we may use one pothole amplification factor function, e.g.,
FNðgÞ (which corresponds to the steady state vehicle response), for all lengthy irregularities. Thus,
we arrive at the following question.

4. How many periods of a periodic irregularity make the oscillator response steady state?

For a given modal oscillator, we set the problem of finding the number Nss of periods such that,
for NXNss; the irregularity consisting of N periods results in an almost steady state response of
the oscillator. To be more specific, we want to make sure that the replacement of the DAF
function FNðgÞ by FNðgÞ when calculating the contact force results in a relative error less than a
prescribed small number e0:
The amplitudes of the contact forces arising after passing the N-period and infinite irregularities

are obtained by substituting the functions FNðgÞ and FNðgÞ; respectively, for FðgÞ into Eq. (30) in
Ref. [1]. Then, it follows from this equation that the relative error in the force due to the
replacement of one of these functions by another is equal to

e ¼
j jFNðgÞj � jFNðgÞj j

jFNðgÞj
:

Substituting Eqs. (3) and (4) into the last equation and applying the triangle inequality, we obtain

e ¼
jFðgÞj j1� j1� e2pNgj j

jFðgÞj
pj1� 1þ e2pNgj ¼ je2pNgj:

Similar to the factor s (Section 3), the relative error of the approximation of the steady state
response by that due to N periods of the irregularity depends on the oscillator eigenfrequency,
speed, and pothole width, but does not depend on the pothole shape. Taking into account Eq. (6), we
get the upper bound for the relative error

epe�2pN jgjz: ð8Þ

As can be seen, the relative error monotonically decreases as jgj and z increase. For jgj51; the
relative error may be sufficiently large; however, as has already been noted, the range of small jgj is
of little interest (the absolute error in this range is small by virtue of the fact that FðgÞ is negligibly
small). Then, it seems natural to estimate the relative error in the range where jFðgÞj takes its
maximum value. Let jgjm be the maximizer of jFðgÞj: Substituting it into Eq. (8), equating the right-
hand side to e0; and taking the logarithm of both sides of the equality, we get the estimate for Nss;

Nss ¼ �
ln e0
2pjgjmz


 �
; ð9Þ

where the brackets denote rounding up to the nearest integer.
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5. Harmonic irregularity

For an example of the above analysis, we consider a harmonic irregularity. For the ‘‘elementary
pothole’’, we take the irregularity defined on the interval ½0; b� by the equation

rðxÞ ¼ 1
2

a sin
2px

b
; ð10Þ

which is the combination of a ‘‘half-sine bump’’ and a ‘‘half-sine pothole’’. The DAF function for
this pothole is derived similar to those in the appendix of the companion paper [1] and is given by

FðgÞ ¼ �
gð1� e2pgÞ
2ðg2 þ 1Þ

: ð11Þ

Substituting Eq. (11) into Eqs. (3) and (4), we obtain the DAF functions for the irregularity
consisting of N sine waves and for the infinite harmonic profile

FNðgÞ ¼ �
gð1� e2pNgÞ
2ðg2 þ 1Þ

; FNðgÞ ¼ �
g

2ðg2 þ 1Þ
: ð12Þ

It is apparent that FNðgÞ exists for all g except g ¼ i: This condition occurs when the modal
oscillator is undamped and its eigenfrequency o0 is equal to the frequency op ¼ 2pv=b of vertical
oscillations of the attachment point moving along the harmonic profile at the speed v: The
functions FðgÞ and FNðgÞ exist for any g; since the singularities on the right-hand sides of the
corresponding equations at g ¼ i are resolvable, which can be checked directly.
Numerical experiments show that, for any fixed 0pzo1; the maximum of jFðgÞj is attained

in the neighborhood of jgj ¼ 1: Substituting jgjm ¼ 1 into Eq. (9), we get the improved estimate2

for Nss;

Nss ¼ �
ln e0
2pz


 �
: ð13Þ

Fig. 1 shows the dependence of Nss on the modal damping coefficient for three values of e0: 0.05,
0.1, and 0.2. As can be seen, when z-0; Nss tends to infinity, which is expected since no steady
state response exists in the undamped case. As z increases, Nss rapidly decreases; the relative
difference of the steady state response (infinite irregularity) and that due to 2 successive sine waves
is less than 10% for z > 0:18; for z > 0:25; this difference is less than 5%. If the damping coefficient
is higher (z > 0:35 for e0 ¼ 10% or z > 0:5 for e0 ¼ 5%), we may consider the response due to just
one ‘‘sine’’ pothole as steady state.
Let us derive the formula for the overall magnification factor of the second pothole SðzÞ:

Consider first the case of small (moderate) damping. As noted in Section 3, s takes its maximum
at jgjE1� z=ð2pÞ; i.e., both sðgÞ and jFðgÞj take their maxima in the neighborhood of jgj ¼ 1:
Hence, the maximum of jF2ðgÞj is always greater than that of jFðgÞj by the factor of 1þ e�2pz:
Now, consider the case of high damping. Substituting jgj ¼ 1 into Eq. (7), we obtain s ¼

j1þ e�2pzeijj; where j ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
: Taking into account that, for large z; e�2pz51; we find that

sp1 when, approximately, p=2pjp3p=2; i.e., when 1=4p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
p3=4; or 7=16pzp15=16:
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Hence, it follows that the magnification factor of the second pothole is less than one (reduction of
the maximum contact force) when 0:66pzp0:97: Now, noting that, for such large damping, the
factor so1 is very close to one, we may neglect this reduction in the maximum contact force and
consider that the second pothole does not change the force. Moreover, for the same reason, we
may use the same formula for s as in the case of light damping for the sake of simplicity. Then, the
magnification factor of the second ‘‘sine’’ pothole is described by the following simple formula for
all 0pzp1:

SðzÞE1þ e�2pz: ð14Þ

Fig. 2 depicts the function on the right-hand side of Eq. (14) (solid line). For a given z; the
ordinate of the curve shows by how much the maximum contact force arising after passage of two
‘‘sine’’ potholes by an oscillator with damping coefficient z is greater than that after passage of
one pothole. For comparison, the dashed line depicts a more accurate dependence of the

magnification factor on z given by the function sðzÞ ¼ j1þ e�2pzei2p
ffiffiffiffiffiffiffiffi
1�z2

p
j: As can be seen, the

difference in the two curves is negligibly small, and, thus, the use of the simple approximate
function (14) is quite justified.
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6. Examples

To illustrate the above discussions, we apply the technique discussed in the companion paper [1]
to the evaluation of the contact forces acting on the road from an SDOF damped oscillator due to
passing different irregularities composed of the ‘‘sine’’ pothole (10). Namely, we consider one
pothole (10) located on the interval ½�b; 0� ðN ¼ 1Þ; irregularities containing N waves of function
(10) on the interval ½�Nb; 0�; and an irregularity containing an infinite number of sine waves
located on the interval ð�N; 0�: In all cases, we are interested in the contact force arising
immediately after the oscillator leaves the irregularity (assuming that it moves further along an
even horizontal surface). After passing an irregularity, the oscillator freely vibrates, and the
contact force can be represented as FcðtÞ ¼ f0e

atcosðot þ cÞ: As discussed in Ref. [1], two
quantities of major interest are ‘‘amplitude’’ f0 and maximum of the contact force, which are
calculated by Eqs. (33) and (34) in Ref. [1], respectively. Not to make the following figures messy,
we show only plots of the amplitudes f0: The y-axis in Figs. 3–5 show the dimensionless
amplitudes f0 of the contact forces, which are normalized by the static force ka; where k is the
stiffness of the spring connecting the mass to the ground.
Fig. 3 shows results related to the oscillator with light damping, z ¼ 10%: The dashed line

depicts the dependence of the amplitude of the contact force after passing one pothole (10) on jgj
(i.e., on the undamped eigenfrequency o0; speed v; and the pothole width b). The thin solid line
corresponds to three potholes (10) located one after another, and the bold solid line corresponds
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Fig. 2. Magnification factor of the second ‘‘sine’’ pothole vs. modal damping.
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to an infinite harmonic profile. As can be seen, the response grows considerably as N increases.
The maximum response due to three successive potholes is still far from that due to an infinite
harmonic profile (the steady state response). Only after passing five potholes can the response be
well approximated by the steady state response (not shown in the figure).
The results shown in Fig. 4 correspond to the case of higher damping, z ¼ 20%: The dashed line

shows the amplitude of the contact force after passing one pothole (10), the thin solid line
corresponds to two potholes (10), and the bold solid line corresponds to an infinite harmonic
profile. Here, the response due to one pothole is again far from the steady state response, and
the peak value of the latter is again considerably greater than that due to one pothole. However,
the response due to two potholes is now pretty close to the steady state response, and that due
to three potholes (not shown) can perfectly be approximated by the latter.
Finally, Fig. 5 corresponds to a heavily damped oscillator with z ¼ 50%: The thin solid line

shows the amplitude of the contact force due to one pothole (10), and the bold solid line, that due
to an infinite harmonic profile. As can be seen, the dynamic effect of one pothole is almost the
same as that of an infinite number of potholes, i.e., for this damping, the response almost achieves
steady state after passing as little as one wave of the sine profile. Further increase in the damping
leads to virtually no difference in the contact force due to one pothole and that due to infinite
number of potholes.
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Fig. 3. Dependence of the amplitude of the normalized contact force for an oscillator with damping coefficient z ¼ 10%
on the undamped eigenfrequency, speed, and b after passing (1) the sine pothole (dashed line), (2) three sine potholes

(solid line), and (3) infinite harmonic profile (bold line).
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Analysis of the plots depicted in Figs. 3–5 shows that they are in a good agreement with the
theoretical estimates obtained in Sections 3–5 (see Figs. 1 and 2).

7. Conclusions

In the companion paper [1], an efficient method for calculating amplitudes (maxima) of the
Fourier components of the tire forces arising after passing a local road surface irregularity by a
general linear vehicle has been developed, which does not require numerical integration of the
governing differential equations. All desired characteristics are calculated in terms of a pothole
DAF, which is a function of one complex variable specific to the irregularity shape. The DAF
functions can be calculated in advance for a number of typical road surface irregularities and then
used with any vehicle model.
If an irregularity can be represented as a superposition of simpler ones, its DAF function can be

obtained in terms of the DAF functions of the latter. This gives us an opportunity to easily find
DAF functions of arbitrary irregularities of complicated shape, thus reducing the problem to
construction of a library of DAF functions representing the simplest typical potholes. In this
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Fig. 4. Dependence of the amplitude of the normalized contact force for an oscillator with damping coefficient z ¼ 20%
on the undamped eigenfrequency, speed, and b after passing (1) the sine pothole (dashed line), (2) two sine potholes

(solid line), and (3) infinite harmonic profile (bold line).
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paper, the equation relating the DAF function of a periodic, infinite or finite, irregularity to the
DAF function of the pothole defined on the interval equal to the period of the irregularity has
been derived. The approach used is easily extended to complex non-periodic irregularities, thus
giving an effective way of calculating DAF functions for arbitrary irregularity configurations.
The efficiency of the DAF functions technique has also been demonstrated by applying it to two

following problems: (1) How to learn without modeling whether two successive identical potholes
amplify a given vehicle eigenvibration at a given speed compared to the case of one pothole? (2)
How many periods of a periodic irregularity are sufficient in order to consider the response of a
modal oscillator as steady state?
Eq. (7), valid for an arbitrary pothole shape, gives us an easy-to-use answer to the first question.

The value of g corresponding to the specified eigenvibration, given vehicle speed and pothole
width, is found by Eqs. (5) and (6). Substituting it into Eq. (7), we immediately find how much the
contact force due to two potholes is greater/less than that due to one pothole. The answer to the
second question is given by Eq. (9).
The discussion has been illustrated by numerical examples demonstrating the application of the

technique to finding contact forces for a single-degree-of-freedom vehicle model traversing a
harmonic irregularity.
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Fig. 5. Dependence of the amplitude of the normalized contact force for an oscillator with damping coefficient z ¼ 50%
on the undamped eigenfrequency, speed, and b after passing (1) the sine pothole (thin line) and (2) infinite harmonic

profile (bold line).
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